World Library  

QR link for Tropospheric Vertical Column Densities of No2 Over Managed Dryland Ecosystems (Xinjiang, China): Max-doas Measurements Vs. 3-d Dispersion Model Simulations Based on Laboratory Derived No Emission from Soil Samples : Volume 14, Issue 13 (28/07/2014)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Tropospheric Vertical Column Densities of No2 Over Managed Dryland Ecosystems (Xinjiang, China): Max-doas Measurements Vs. 3-d Dispersion Model Simulations Based on Laboratory Derived No Emission from Soil Samples : Volume 14, Issue 13 (28/07/2014)

By Mamtimin, B.

Click here to view

Book Id: WPLBN0003972583
Format Type: PDF Article :
File Size: Pages 38
Reproduction Date: 2015

Title: Tropospheric Vertical Column Densities of No2 Over Managed Dryland Ecosystems (Xinjiang, China): Max-doas Measurements Vs. 3-d Dispersion Model Simulations Based on Laboratory Derived No Emission from Soil Samples : Volume 14, Issue 13 (28/07/2014)  
Author: Mamtimin, B.
Volume: Vol. 14, Issue 13
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Behrendt, T., Badawy, M. M., Wu, Z., Meixner, F. X., Mamtimin, B., Qi, Y., & Wagner, T. (2014). Tropospheric Vertical Column Densities of No2 Over Managed Dryland Ecosystems (Xinjiang, China): Max-doas Measurements Vs. 3-d Dispersion Model Simulations Based on Laboratory Derived No Emission from Soil Samples : Volume 14, Issue 13 (28/07/2014). Retrieved from http://community.schoollibrary.com/


Description
Description: Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany. We report on MAX-DOAS observations of NO2 over an oasis-ecotone-desert ecosystem in NW-China. There, local ambient NO2 concentrations originate from enhanced biogenic NO emission of intensively managed soils. Our target oasis Milan is located at the southern edge of the Taklimakan desert, very remote and well isolated from other potential anthropogenic and biogenic NOx sources. Four observation sites for MAX-DOAS measurements were selected, at the oasis center, downwind and upwind of the oasis, and in the desert. Biogenic NO emissions in terms of (i) soil moisture and (ii) soil temperature of Milan oasis' (iii) different land-cover type sub-units (cotton, Jujube trees, cotton/Jujube mixture, desert) were quantified by laboratory incubation of corresponding soil samples. Net potential NO fluxes were up-scaled to oasis scale by areal distribution and classification of land-cover types derived from satellite images using GIS techniques. A Lagrangian dispersion model (LASAT, Lagrangian Simulation of Aerosol-Transport) was used to calculate the dispersion of soil emitted NO into the atmospheric boundary layer over Milan oasis. Three dimensional NO concentrations (30 m horizontal resolution) have been converted to 3-D NO2 concentrations, assuming photostationary state conditions. NO2 column densities were simulated by suitable vertical integration of modeled 3-D NO2 concentrations at those downwind and upwind locations, where the MAX-DOAS measurements were performed. Downwind-upwind differences (a direct measure of Milan oasis' contribution to the areal increase of ambient NO2 concentration) of measured and simulated slant (as well as vertical) NO2 column densities show excellent agreement. This agreement is considered as the first successful attempt to prove the validity of the chosen approach to up-scale laboratory derived biogenic NO fluxes to ecosystem field conditions, i.e. from the spatial scale of a soil sample (cm2) to the size of an entire agricultural ecosystem (km2).

Summary
Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory derived NO emission from soil samples

Excerpt
Ashuri, F. A.: Der Austausch von Stickstoffmonoxid zwischen Boden und Atmosphäre unter besonderer Berücksichtigung des Bodenwassergehaltes, Einfluss kulturlandschaftlicher Verhältnisse auf den Umsatz eines Spurengases. Ph.D. thesis, Johannes Gutenberg University Mainz, Mainz, Germany, 1–169, 2009.; Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, doi:10.5194/acp-4-1461-2004, 2004.; Bargsten, A., Falge, E., Pritsch, K., Huwe, B., and Meixner, F. X.: Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types, Biogeosciences, 7, 1425–1441, doi:10.5194/bg-7-1425-2010, 2010.; Behrendt, T., Veres, P. R., Ashuri, F., Song, G., Flanz, M., Mamtimin, B., Bruse, M., Williams, J., and Meixner, F. X.: Characterisation of NO production and consumption: new insights by an improved laboratory dynamic chamber technique, Biogeosciences Discuss., 11, 1187–1275, doi:10.5194/bgd-11-1187-2014, 2014.; Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Highly resolved global distribution of tropospheric NO2 using GOME narrow swath mode data, Atmos. Chem. Phys., 4, 1913–1924, doi:10.5194/acp-4-1913-2004, 2004.; Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O. C., Vogel, A., Hartmann, A., Kromminga, H., Bovensmann, H., Frerick, J., and Burrows, J. P.: Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region, J. Photoch. Photobio. A, 157, 167–184, 2003.; Brinksma, E. J., Pinardi, G., Volten, H., Braak, R., Richter, A., Schoenhardt, A., Van Roozendael, M., Fayt, C., Hermans, C., Dirksen, R. J., Vlemmix, T., Berkhout, A. J. C., Swart, D. P. J., Oetjen, H., Wittrock, F., Wagner, T., Ibrahim, O. W., Leeuw, G. de., Moerman, M., Curier, R. L., Celarier, E. A., Cede, A., Knap, W. H., Veefkind, J. P., Eskes, H. J., Allaart, M., Rothe, R., Piters, A. J. M., and Levelt, P. F.: The 2005 and 2006 DANDELIONS NO2 and aerosol intercomparison campaigns, J. Geophys. Res., 113, 1–18, 2008.; Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., and Wang, T.: Ozone precursor relationships in the ambient atmosphere, J. Geophys. Res., 92, 6037–6055, 1992.; Chander, G. and Markham, B.: Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges, IEEE T. Geosci. Remote, 41, 2674–2677, 2003.; Conrad, R.: Soil Microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, COS, N2O and NO), Microbiol. Rev., 60, 609–640, 1996.; Crutzen, P. J.: Role of the tropics in atmospheric chemistry, in: The Geophysiology of Amazonia, edited by: Dickinson, R. E., John Wiley & Sons, New York, 107–132, 1987.; Davidson, E. A. and Kingerlee, W.: A global inventory of nitric oxide emissions from soils, Nutr. Cycl. Agroecosys., 48, 37–50, 1997.; Denman, K. L., Brasseur, G. P., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E. A., Jacob, D. J., Lohmann, U., Ramachandran, S., Da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: Coupling

 
 



Copyright © World Library Foundation. All rights reserved. eBooks from School eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.