World Library  

QR link for Identification of Climatic State with Limited Proxy Data : Volume 8, Issue 1 (31/01/2012)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Identification of Climatic State with Limited Proxy Data : Volume 8, Issue 1 (31/01/2012)

By Annan, J. D.

Click here to view

Book Id: WPLBN0003982018
Format Type: PDF Article :
File Size: Pages 23
Reproduction Date: 2015

Title: Identification of Climatic State with Limited Proxy Data : Volume 8, Issue 1 (31/01/2012)  
Author: Annan, J. D.
Volume: Vol. 8, Issue 1
Language: English
Subject: Science, Climate, Past
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Hargreaves, J. C., & Annan, J. D. (2012). Identification of Climatic State with Limited Proxy Data : Volume 8, Issue 1 (31/01/2012). Retrieved from

Description: RIGC/JAMSTEC, 3173-25 Showamachi, Yokohama, Japan. We investigate the identifiability of the climate by limited proxy data. We test a data assimilation approach through perfect model pseudoproxy experiments, using a simple likelihood-based weighting based on the particle filtering process. Our experimental set-up enables us to create a massive 10 000-member ensemble at modest computational cost, thus enabling us to generate statistically robust results. We find that the method works well when data are sparse and imprecise, but in this case the reconstruction has a rather low accuracy as indicated by residual RMS errors. Conversely, when data are relatively plentiful and accurate, the estimate tracks the target closely, at least when considering the hemispheric mean. However, in this case, our prior ensemble size of 10 000 appears to be inadequate to correctly represent the true posterior, and the regional performance is poor. Using correlations to assess performance gives a more encouraging picture, with significant correlations ranging from about 0.3 when data are sparse to values over 0.7 when data are plentiful, but the residual RMS errors are substantial in all cases. Our results imply that caution is required in interpreting climate reconstructions, especially when considering the regional scale, as skill on this basis is markedly lower than on the large scale of hemispheric mean temperature.

Identification of climatic state with limited proxy data

Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J.: Obstacles to high-dimensional particle filtering, Mon. Weather Rev., 136, 4629–4640, 2008.; Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking, IEEE T. Signal Proces., 50, 174–188, 2002.; Bengtsson, T., Bickel, P., and Li, B.: Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems, in: Probability and Statistics: Essays in Honor of David A. Freedman, vol. 2, Institute of Mathematical Statistics, 316–334, 2008.; Bhend, J., Franke, J., Folini, D., Wild, M., and Brönnimann, S.: A novel approach to climate reconstructions using Ensemble Kalman Filtering, Clim. Past Discuss., 7, 2835–2862, doi:10.5194/cpd-7-2835-2011, 2011.; Boer, G. and Lambert, S.: Multi-model decadal potential predictability of precipitation and temperature, Geophys. Res. Lett., 35, L05706, doi:10.1029/2008GL033234, 2008.; Christiansen, B. and Ljungqvist, F.: Reconstruction of the extra-tropical NH mean temperature over the last millennium with a method that preserves low-frequency variability, J. Climate, 24, 6013-�6034, doi:10.1175/2011JCLI4145.1, 2011.; Christiansen, B., Schmith, T., and Thejll, P.: A surrogate ensemble study of climate reconstruction methods: Stochasticity and robustness, J. Climate, 22, 951–976, 2009.; Christiansen, B., Schmith, T., and Thejll, P.: Reply, J. Climate, 23, 2389–2844, 2010.; Dubinkina, S., Goosse, H., Sallaz-Damaz, Y., Crespin, E., and Crucifix, M.: Testing a particle filter to reconstruct climate changes over the past centuries, Int. J. Bifurcat. Chaos, in press, 2012.; Dunstone, N. and Smith, D.: Impact of atmosphere and sub-surface ocean data on decadal climate prediction, Geophys. Res. Lett, 37, L02709, doi:10.1029/2009GL041609, 2010.; Goosse, H., Renssen, H., Timmermann, A., Bradley, R., and Mann, M.: Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium, Clim. Dynam., 27, 165–184, 2006.; Goosse, H., Crespin, E., de Montety, A., Mann, M., Renssen, H., and Timmermann, A.: Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation, J. Geophys. Res., 115, D09108, doi:10.1029/2009JD012737, 2010.; Hansen, J. and Lebedeff, S.: Global trends of measured surface air temperature, J. Geophys. Res., 92, 13345–13372, 1987.; Jansen, E., Overpeck, J., Briffa, K., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D.: Palaeoclimate, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.; Mann, M., Zhang, Z., Hughes, M., Bradley, R., M


Copyright © World Library Foundation. All rights reserved. eBooks from School eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.